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The fields of QCD

The relativistic theory of strongly-interacting quarks and gluons.

Quarks are (spin 1/2) Dirac fermions, so they have a 4-component
spin index. They are also charged under the fundamental
representation of the non-abelian gauge group SU(3), so each spin
component is in turn a three-component vector. The quark field is
ψa
α, α = 1 . . . 4, a = 1 . . .Nc = 3

Gluons (to preserve the gauge invariant structure) must be charged
under the adjoint representation of the gauge group. They are then
eight real massless vector bosons; Ai

µ, i = 1 . . . 8.

The simplest lagrangian that preserves gauge invariance introduces
interactions between quarks and gluons as well as gluon
self-interactions. (cf QED).
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Continuum gauge transformations

Quark fields form a (fundamental) representation of the gauge group,
SU(3), that means they transform under a (space-time dependent)
rotation as

ψ(x) −→ ψ(g)(x) = Λ(x)ψ(x)

ψ̄(x) −→ ψ̄(g)(x) = ψ̄(x)Λ†(x)

where Λ(x) is the gauge transformation at x , and Λ†(x)Λ(x) = 1,
det Λ(x) = 1.

To make a theory of fermion with this symmetry, another field is
needed that transmits information about relative gauge
transformations at nearby points.

The derivative ∂µ acting on the quark field must be replaced with a
gauge covariant derivative Dµ with

Dµ = ∂µ − igAµ
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Continuum gauge transformations (2)

Aµ is another field, that transforms according to

Aµ −→ A(g)
µ =

1

ig
(∂µΛ)Λ−1 + ΛAµΛ−1

Now under a gauge transformation, Dψ transforms in the same way
as ψ so the bilinear ψ̄Dψ is gauge invariant.

Aµ forms an adjoint representation of the gauge transformation group.

So A can be written in terms of an element of the Lie algebra of
SU(3): Aµ(x) = T aAa

µ(x)

A field strength tensor can be written, which is analogous to the
electromagnetic tensor (which contains electric and magnetic fields)

Fµν = ∂µAν − ∂νAµ + ig [Aµ,Aν ]

The QCD field strength tensor has a commutator that is not present
for QED, which leads to gluon self-interaction.
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Gauge invariant actions

The field strength tensor has simple transformation properties

Fµν −→ F (g)
µν = ΛFµνΛ−1

A gauge-invariant action on the gauge fields can be defined

Sg =
1

4

∫
d4x Tr FµνFµν

Similarly, for a quark field, a suitable action is

Sq =

∫
d4x ψ̄(γµDµ + m)ψ

Here, we have wick-rotated the gamma-matrices so the quark fields
form a spin-1/2 representation of SO(4).

{γµ, γν} = δµν
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Lattice fields - the quarks

Quark fields are discretised in the simplest way; the fields are
restricted to take values only on sites of the four-dimensional
space-time lattice, ψ(x , t)→ ψn1,n2,n3,n4 .

Each lattice site has 4× Nc = 12 degrees of freedom per quark
flavour.

Gauge transforms will be defined for sites too:

ψn1,n2,n3,n4 −→ ψ
(g)
n1,n2,n3,n4 = Λn1,n2,n3,n4ψn1,n2,n3,n4 .

In a path integral, fermions must be represented by elements of a
grassmann algebra: ∫

dη = 0,

∫
dη η = 1

This will make life complicated for us when it comes to simulations.

And more problems with quarks will arise when we try to define an
action...
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Lattice fields - the gluons

Wilson recognised the way to build actions with a gauge symmetry on
the lattice was to put the gluon field onto the lattice in a very
different way: gluons live on links.

Abandon the vector potential as the fundamental degree of freedom,
use instead a small path-ordered exponential connecting adjacent sites
on the lattice:

Uµ(x) = Pexp

{
ig

∫ x+µ̂

x
ds Aµ(s)

}

Path-ordering is needed to give an unambiguous meaning to this
expression since the gauge group is non-abelian (Aµ(x) does not
commute with Aµ(y) when x 6= y).

Uµ ∈ SU(3) while Aµ ∈ L(SU(3)).

To define a path-integral, we need to integrate over the SU(3) group
manifold; use an invariant Haar measure, DU
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Lattice gauge invariants

Define the rules of gauge transformations so gauge invariants can be
constructed out of lattice fields:

Gauge transformations of lattice fields

ψ(x) −→ ψ(g)(x) = Λ(x)ψ(x)

ψ̄(x) −→ ψ̄(g)(x) = ψ̄(x)Λ†(x)

Uµ(x) −→ U(g)
µ (x) = Λ(x)Uµ(x)Λ†(x + µ̂)

Since Λ†Λ = 1, the following expressions are invariant under these
transformations

Simple lattice gauge invariant functions

ψ̄(x)Uµ(x)ψ(x + µ̂)

Tr Uµ(x)Uν(x + µ̂)U†µ(x + ν̂)U†ν(x)
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Lattice gauge invariants
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Gauge invariance

↓

↙↘

To rotate a quark field at site x , ψ(x)→
ψg (x) = g(x)ψ(x) . . .

. . . we must also rotate the gauge fields
that start or end at the site Uµ(x) →
Ug
µ (x) = g(x)Uµ(x)g †(x + µ̂)

The gauge invariance of the special func-
tions is seen
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Lattice action - the gluons

To define a path integral, we also need an action

The simplest gauge invariant function of the gauge link variables
alone is the plaquette (the trace of a path-ordered product of links
around a 1× 1 square).

SG [U] =
β

Nc

∑
x ,µ<ν

ReTr
(

1− Uµ(x)Uν(x + µ̂)U†µ(x + ν̂)U†ν(x))
)

This is the Wilson gauge action

A path integral for the Yang-Mills theory of gluons would be

ZYM =

∫ ∏
µ,x

DUµ(x)e−SG [U]

The coupling constant, g appears in β = 2Nc
g2

No need to fix gauge; the gauge orbits can be trivially integrated over
and the group manifold is compact.
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Lattice action - the gluons

A Taylor expansion in a shows that

SG [U] =
β

Nc

∑
x ,µ<ν

ReTr
(

1− Uµ(x)Uν(x + µ̂)U†µ(x + ν̂)U†ν(x))
)

=

∫
d4x − 1

4
Tr FµνFµν +O(a2)

As with the scalar boson lattice action, all terms proportional to odd
powers in the lattice spacing vanish because the lattice action
preserves a discrete parity symmetry.

The action is also invariant under a charge-conjugation symmetry,
which takes Uµ(x)→ U∗µ(x).

We have kept almost all of the symmetries of the Yang-Mills sector,
but broken the SO(4) rotation group down to the discrete group of
rotations of a hypercube.
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Lattice actions - the quarks

The continuum action is a bilinear with a first-order derivative
operator inside;

SQ =

∫
d4xψ̄(γµDµ + m)ψ

When m = 0, the action has an extra, chiral symmetry:

ψ −→ ψ(χ) = e iαγ5ψ, ψ̄ −→ ψ̄(χ) = ψ̄e iαγ5

The simplest lattice representation of a first-order derivative that
preserves reflection symmetries is the central difference:

∂µψ(x) =
1

2a
(ψ(x + µ̂)− ψ(x − µ̂))

This can be made gauge covariant by including the gauge links:

Dµψ(x) =
1

2a
(Uµ(x)ψ(x + µ̂)− Uµ(x − µ̂)ψ(x − µ̂))

BUT on closer inspection, there are more minima to this action than
we want. Consider the case with no gauge fields, and when
ψ(x) = e ikx with k = {π, 0, 0, 0} or {π, π, 0, 0} or {π, π, π, 0} or . . . .
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Lattice doubling

Central difference between

these two points is zero, not large!
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Lattice actions - the quarks (3)

This is the (in)famous doubling problem.

The Nielson-Ninomiya “no-go” theorem

There are no chirally symmetric, local, translationally invariant
doubler-free fermion actions on a regular lattice.

To put quarks on the lattice, more symmetry must be broken or else a
theory with extra flavours of quarks must be simulated.

A number of solutions are used, each with their advantages and
disadvantages.

The most commonly used are:

Wilson fermions
Kogut-Susskind (staggered) fermions
Ginsparg-Wilson fermions (overlap, domain wall, perfect...)
Twisted mass
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Wilson’s lattice quark action

Wilson’s original solution was to abandon chiral symmetry and add a
lattice operator whose continuum limit is an irrelevant dimension-five
operator. The term gives the doublers a mass ∝ 1/a

The extra term in the lattice action is the lattice representation of

a
∑
µ

D2
µψ ≈

∑
µ

Uµ(x)ψ(x + µ̂) + U†µ(x − µ)ψ(x − µ̂)

The breaking of chiral symmetry means the quark mass is not
protected from additive renormalisations (short-distance gluons will
now give quarks a large mass)

Approaching the continuum limit requires fine-tuning to restore chiral
symmetry and ensure quarks are light.

Breaking chiral symmetry now introduces lattice artefacts at O(a).

This action has a Symanzik-improved counterpart, the
Sheikholeslami-Wohlert action, which removes all O(a) errors by a
field redefinition and the addition of another dim-5 term, σµνFµν
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The Ginsparg-Wilson relation

Actions that break chiral symmetry, but preserve a modified version
can be constructed. The new chiral symmetry is

{γ5, /D} = 2a /Dγ5/D so {γ5, /D
−1} = 2a γ5

In a propagator, chiral symmetry is broken by a contact term
A number of realisations of this symmetry are in use. Neuberger’s
overlap uses an action

D = I − DW√
D†W DW

where DW is the Wilson action with a large negative quark mass.
Domain Wall quarks use a 5d lattice field (coupled to
four-dimensional gluons). The boundaries in the 5th dimension are set
up so left- and right-handed quarks bind to different walls in 5d.
Modes are separated so chiral symmetry is (almost) maintained.
These quarks are expensive!
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Staggered quarks

Kogut and Susskind proposed an interesting partial solution to the
doubling problem.

A field redefinition is used to scatter the sixteen components of four
flavours (“tastes”) of quarks across the corners of a hypercube.

On each lattice sites there are just Nc degrees of freedom

A remnant of chiral symmetry remains which is sufficient to ensure
there is no additive mass renormalisation.

Simulations are fast; there is no fine-tuning so the fermion matrix is
well-behaved and always positive which helps the simulation
algorithms

UV gluons can change the “taste” of a quark, so flavours mix

Practitioners simulate theories with one or two flavours by taking
fractional powers of the fermion path integral. It is still a matter of
debate whether this is legitimate.
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Summary

Gauge symmetry on the lattice can be maintained. This is crucial to
ensure we’re simulating QCD and without gauge symmetry, we would
be stuck with an impossible fine-tuning problem.

For gauge invariance, quarks on site, gluons on links. Now we have
a set of gauge invariant functions to construct actions, observables,
etc.

A simple gluon action can be constructed from the trace of the
product of links around a small square. This preserves most of the
symmetries of the continuum Yang-Mills action

Quarks suffer from doubling. A set of different “work-arounds” exist,
but all have drawbacks (they either break a symmetry or are
numerically expensive).
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